Syllabus

COURSE SYLLABUS

<table>
<thead>
<tr>
<th>Course Number:</th>
<th>CHM 1020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section number:</td>
<td>003</td>
</tr>
<tr>
<td>Prerequisite(s):</td>
<td>Grade C or above from MAT 0018, 0028 & 1033</td>
</tr>
<tr>
<td>Course Title:</td>
<td>Fundamentals of Chemistry</td>
</tr>
<tr>
<td>Course Credit:</td>
<td>4</td>
</tr>
<tr>
<td>Course Hours:</td>
<td>3.75 hours per week</td>
</tr>
<tr>
<td>College:</td>
<td>Science and Technology</td>
</tr>
<tr>
<td>Department:</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Course website:</td>
<td>Canvas and Mastering Chemistry Access</td>
</tr>
<tr>
<td>Supplies:</td>
<td>Non-programmable scientific calculator</td>
</tr>
<tr>
<td>Faculty Name:</td>
<td>Dr. Sanuja Pitigala</td>
</tr>
<tr>
<td>Term and Year:</td>
<td>Fall 2023</td>
</tr>
<tr>
<td>Place and Time:</td>
<td>RM 102 Dyson Building, M, W 11.00-12.15pm F 11.00-11.50am</td>
</tr>
<tr>
<td>Office Location:</td>
<td>131 Dyson Pharmacy Building</td>
</tr>
<tr>
<td>Email:</td>
<td>sanuja.pitigalaarach@famu.edu</td>
</tr>
</tbody>
</table>

| Office Hours | Monday 9.15-10.45am | Tuesday 9.15-10.45am | Wednesday 9.15-10.45am | Thursday | Friday By appointments |

Philosophical Statement for Student Success

Your Work Ethic Determines What You Learn, What You Learn Determines Your Grade

1. **Course Description**
 Fundamentals of Chemistry, CHM-1020 is a course designed to help students understand the basic concepts of chemistry and master the skills necessary to succeed in the main stream General Chemistry sequence, CHM 1045-1046

2. **Course Co-requisites:** High School Algebra II, MAC 1105 or the equivalent.

3. **General Objectives and Outcomes**
 In accordance with the [Academic Learning Compact](#) specific outcomes of the Department of Chemistry for CHM1020, students can be summarized under the following rubrics:
 - **Demonstrate** critical thinking skills as measured by the ability to solve chemical problems, and read,
evaluate, and interpret numerical, chemical and general scientific information.

- **Demonstrate** proficiency in written and oral communications.
- **Possess** a thorough knowledge of basic chemistry
- **Possess** the ability to make effective use of information resources in chemistry applications.

4. Global Learning Outcomes

A. **Critical thinking** - Students will develop the ability to evaluate the validity of their own and other's ideas through questioning and analyzing, and the skill to synthesize the results into the creative process.
 - i. *Evaluate* contextual, numerical and graphical data for validity.
 - ii. *Define, analyze, and devise* solutions for new and different word problems.

B. **Scientific and Mathematical Literacy** - Students will apply the understanding of natural or behavioral scientific principles and methods as well as mathematical concepts and methods to solve abstract and practical problems.
 - i. *Read, write, listen to and speak* the language of the sciences.
 - ii. *Apply* principles of scientific inquiry to real world situations.

C. **Information Management** - Students will use effective strategies to collect, verify, document, and manage information from a variety of sources.
 - i. *Understand* how scientific information is organized.
 - ii. *Use information-seeking strategies* necessary to access information efficiently and effectively.
 - iii. *Use appropriate technology* to enhance scientific thinking and understanding.

5. Online Materials

Constant use of the **course website** will have a major impact on your success in this course. Most of the relevant course materials (i.e., syllabus course outline, problem sets, quizzes, test/quiz grades, assignments, etc.) will be presented to you online via the website, and **not in class**.

Pearson My Lab Mastering Chemistry

Students must enroll in Pearson My lab and Mastering Chemistry. All course material will be posted on Canvas or My lab and Mastering Chemistry (Quizzes and homework).

6. Course Contents:

In CHM 1020, students should demonstrate understanding and knowledge in the following areas of Chemistry:

- Chapter 1 The Chemical World
- Chapter 2 Measurement and Problem Solving
- Chapter 3 Matter and Energy
- Chapter 4 Atoms and Elements
- Chapter 5 Molecules and Compounds
- Chapter 6 Chemical Compositions
- Chapter 7 Chemical Reactions
- Chapter 8 Quantities in Chemical Reactions
- Chapter 9 Electrons in Atoms and the Periodic Table
- Chapter 10 Chemical Bonding
- Chapter 11 Gases
Chapter 12 Liquids, Solids, and Intermolecular Forces
Chapter 13 Solutions
Chapter 14 Acids and Bases

Instructional Strategies: Combined (Hybrid) pedagogic approaches will be practiced
 a. Traditional Lecturing.
 b. Active Learning
 c. Supplimental Instruction

7. Learning Objectives by Chapter: At the conclusion of each section, you should know:

Part-I Chapter 1- Chapter 5

Chapter 1 the Chemical World

1.3 Describe the steps involved in the scientific method.
1.4 Analyzing and Interpreting Data

Chapter 2 Measurement and Problem Solving

2.2. Write decimal numbers in scientific notation.
2.3. Explain the significance of uncertainty in measurement in chemistry and how significant figure is use to indicate a measurement’s certainty.
2.4. Apply the rules for significant figures, in calculations involving addition, subtraction, multiplication, and division.
2.5. Name the units for mass, length, and volume in metric system and convert from one unit to another.
2.6-9. Use dimensional analysis to solve problems involving unit conversions.
2.10. Solve problems involving density.

Chapter 3 Matter and Energy

3.2-3. Define and classify matter according to its state.
3.4. Classifying matter according to its composition.
3.5-6. Differences in matter: Physical and chemical properties and chemical and physical changes.
3.8. Energy and units of energy
3.10. Convert measurements among the Fahrenheit, Celsius, and Kelvin temperature.

Chapter 4 Atoms and Elements

4.2. Describe Dalton’s model of the atoms and compare it to the earlier concepts of matter.
4.3. The nuclear atom: how nuclear model of the atom differs from Dalton and Thomson’s models.
4.4. Describe the three basic subatomic particles.
4.5. Define the terms atomic number
4.6. Patterns of Periodic table
4.7. Ion, losing and gaining electrons
4.8. Explain the relationship between the atomic mass of an element and masses of isotopes.
4.9. Atomic mass, Calculation of the average mass of an element

Chapter 5 Molecules and Compounds
5.2. Discuss the law of constant composition
5.3. How to represent a compound
5.4. Define an element and a compound
5.5. Write the chemical formula for an ionic compound.
5.6-8. Name binary ionic and nonionic compounds. Recognize names, formulas, and charges of Polyatomic ions, name compounds containing polyatomic ions, and write formulas from names of compounds containing polyatomic ions.
5.9-10. Naming Acids and Nomenclature summary
5.11. Calculation of Formula Mass

PART 2 Chapter 6 – Chapter 8

Chapter 6 Chemical Composition
6.2-3. Apply the concepts of the mole, molar mass, and Avogadro's number to solve chemistry problems.
6.4. Counting Molecules by the gram, Calculate the molar mass of a compound.
6.5. Chemical Formulas as conversion Factors
6.6-7. Calculate the percent composition of a compound from its chemical formula and from experimental data.
6.8-9. Determine the empirical formula for a compound from its percent composition.
 Compare an empirical formula to a molecular formula and calculate a molecular formula from the empirical formula of the compound and its molar mass.

Chapter 7 Chemical Reactions
7.2. Describe the evidence of a chemical reaction.
7.3-4. Write and balance chemical equation.
7.5. Introduce aqueous solutions
7.6-9. Give examples of a combination reaction, decomposition reaction, single displacement reaction, gas evolution, and double-displacement reaction.

Chapter 8 Quantities in Chemical Reactions
8.1-2 Define stoichiometry and describe the strategy required to solve problems based on chemical equations.
8.3. Mole to Mole conversions. Solve problems in which the reactants and products are both in moles.
8.4. Solve problems in which mass is given and the answer is to be determined in moles or the moles are given and the mass to be determined. Solve problems in which mass is given and the answer is to be determined as mass.
8.5-6. Solve problems involving limiting reactants and yield.
8.7. Enthalpy of a reaction
Chapter 9 Electrons in Atoms and the Periodic Table

9.2-3. List the three basic characteristics of electromagnetic radiation and describe the electromagnetic spectrum.

9.4. Explain the relationship between the line spectrum and the quantized energy levels of an electron in an atom (The Bohr Model). Describe the principal energy levels, sublevels, and orbitals of an atom.

9.5-6. Describe The Quantum-Mechanical Model. Use the guidelines to write electron configurations.

9.7-8. Describe how the electron configurations of the atoms relate to their position on the periodic table and write electron configurations for elements based on their position on the periodic table.

9.9. Describe the periodic trends.

Chapter 10 Chemical Bonding

10.2. Draw the Lewis Structure for a given atom.

10.3. Discuss the Lewis structure of an ionic compound.

10.4-5. Draw the electron structure of a covalent bond and compound and also for polyatomic ions.

10.6. Discuss the Resonance of the Lewis structure of the same molecules.

10.7. Determine the shape of a compound by using VSEPR method.

10.8. Introduce electronegativity and polarity.

Chapter 11 Gases

11.2. Briefly explain about Kinetic Molecular Theory

11.3. Explain atmospheric pressure and how it is measure. Be able to convert among the various units of pressure.

11.4. Use Boyle’s law to calculate changes in pressure or volume of a sample of gas at a constant temperature.

11.5. Use Charles’slaw to calculate changes in temperature or volume of a sample of gas at constant pressure.

11.6. Use the combined gas law to calculate changes in pressure temperature, or volume of a sample of gas.

11.7. Use Avogadro’s law in calculation

11.8. Use the ideal gas law to solve problems involving pressure, volume, temperature and number of moles.

11.9. Use Dalton’s Law of pressures to calculate the total pressure from a mixture of gases or the pressure of a single gas in a mixture of gases.

11.10. Solve stoichiometric problems involving gases.

Chapter 12 Liquids, Solids and Intermolecular Forces

12.2. Explain why liquids tend to form drops and explain the properties of liquids and solids.

12.4. Explain about evaporation and condensation. Define boiling point and explain heating curve. Calculate the amount of energy involved in a change of state.

12.5. Define melting point and explain cooling curve. Calculate the amount of energy involved in a change of state.

12.6. Describe the three types of intermolecular forces and explain their significance in liquids.
PART 4 CHAPTER 13 – CHAPTER 14

Chapter 13 Solutions

13.2. **Define** homogeneous mixtures.
13.3. **Describe** how solute-solvent interaction affects the solubility.
13.5-7. **Solve** problems involving mass percent, volume percent, molarity and dilution.
13.9. **Use** the concept of colligative properties to calculate molality, freezing point, boiling point, freezing point depression, and boiling point elevation of various solution.
13.10 **Discuss** osmosis and osmotic pressure and their importance in living systems.

Chapter 14 Acids and Bases

14.2-3. **Discuss** the properties of acids and bases
14.4. **Compare** the molecular definitions of acids and bases, including Arrhenius and Bronsted-Lowry, acids and bases.
14.5. **Describe** the general reactions of acids and bases.
14.6. **Describe** a neutralization reaction and do calculations involving titrations
14.7. Strong and weak acids and bases. Describe properties, ionization, dissociation, and strength of electrolytes and compare them to nonelectrolytes.
14.8. Dissociation of water
14.9. **Calculate** the pH of a solution from the hydrogen ion concentration. Calculate the concentrations of H^+, OH^-, P_{H} and P_{OH} in a solution using the ion product constant for water.

III. Tentative Schedule

<table>
<thead>
<tr>
<th>PART-I</th>
<th>Chapter 1 - 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 28</td>
<td>August 30</td>
</tr>
<tr>
<td>Course Overview</td>
<td>2.4 Significant Figures in Calculation</td>
</tr>
<tr>
<td>Introduction to Mastering Chemistry</td>
<td>2.5 The Metric System</td>
</tr>
<tr>
<td>1.3 Describe the scientific method.</td>
<td>2.6-9. Dimensional Analysis</td>
</tr>
<tr>
<td>1.4 Analyzing and Interpreting Data</td>
<td></td>
</tr>
<tr>
<td>2.1 Scientific Notation</td>
<td></td>
</tr>
<tr>
<td>2.2 Measurement and Uncertainty</td>
<td></td>
</tr>
<tr>
<td>September 1</td>
<td>September 8</td>
</tr>
<tr>
<td>2.10 Density</td>
<td>4.4 subatomic particles</td>
</tr>
<tr>
<td>3.2-3Classify matter</td>
<td>4.5 Atomic Numbers</td>
</tr>
<tr>
<td>3.4. Classify matter based on composition</td>
<td>4.6 Pattern of periodic table</td>
</tr>
<tr>
<td>3.5-6 Physical chemical changes</td>
<td>4.7 Ions</td>
</tr>
<tr>
<td>September 11</td>
<td>September 15</td>
</tr>
<tr>
<td>4.9 average atomic mass</td>
<td>5.4 Element and compound</td>
</tr>
<tr>
<td>5.2 law constant composition</td>
<td>5.5 chemical formula for ionic compound</td>
</tr>
<tr>
<td>5.3 how to represent a compound</td>
<td>5.6-7-8 Naming binary compound</td>
</tr>
<tr>
<td>September 18</td>
<td></td>
</tr>
<tr>
<td>5.9-10 Naming acids</td>
<td>5.11 Formula mass Review</td>
</tr>
<tr>
<td>5.4 Element and compound</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Topic</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>September 20</td>
<td>EXAM #1</td>
</tr>
<tr>
<td>September 22</td>
<td>6.2-3 The Mole, Molar Mass of Compounds</td>
</tr>
<tr>
<td></td>
<td>6.4 Mole to gram conversion</td>
</tr>
<tr>
<td></td>
<td>6.5 chemical formula as conversion factors</td>
</tr>
<tr>
<td>September 25</td>
<td>6.6-7 Percent Composition of Compounds</td>
</tr>
<tr>
<td></td>
<td>6.8-9 empirical formula</td>
</tr>
<tr>
<td></td>
<td>Review Quiz 1</td>
</tr>
<tr>
<td>September 27</td>
<td>7.2 Evidence of a chemical reaction</td>
</tr>
<tr>
<td></td>
<td>7.3 write chemical reactions</td>
</tr>
<tr>
<td></td>
<td>7.4 Balance chemical reactions</td>
</tr>
<tr>
<td>September 29</td>
<td>7.5 Aqueous solutions</td>
</tr>
<tr>
<td></td>
<td>7.6-9 Types of chemical reactions</td>
</tr>
<tr>
<td>October 2</td>
<td>cont. CH 07</td>
</tr>
<tr>
<td></td>
<td>8.1-2 Introduction to Stoichiometry</td>
</tr>
<tr>
<td>October 4</td>
<td>8.3 Mole-Mole Calculations</td>
</tr>
<tr>
<td>October 6</td>
<td>8.5 Mass-Mass Calculations</td>
</tr>
<tr>
<td></td>
<td>8.4 Mole-Mass Calculations</td>
</tr>
<tr>
<td>October 9</td>
<td>8.6 Limiting Reactant and Yield Calculations</td>
</tr>
<tr>
<td></td>
<td>8.7 Enthalpy of a reaction</td>
</tr>
<tr>
<td>October 11</td>
<td>Continued CH 08</td>
</tr>
<tr>
<td>October 13</td>
<td>9.2-3 Electromagnetic Radiation</td>
</tr>
<tr>
<td></td>
<td>9.4 The Bohr Atom</td>
</tr>
<tr>
<td></td>
<td>9.5 Quantum Mechanical model</td>
</tr>
<tr>
<td></td>
<td>9.6 electron configuration</td>
</tr>
<tr>
<td>October 16</td>
<td>9.7-9.8 electron configuration of atoms and their position of the periodic table</td>
</tr>
<tr>
<td></td>
<td>9.9 Periodic Trends</td>
</tr>
<tr>
<td></td>
<td>in Atomic Properties</td>
</tr>
</tbody>
</table>
PART-3 Chapter 9–Chapter 11

<table>
<thead>
<tr>
<th>Date</th>
<th>Topics</th>
<th>Date</th>
<th>Topics</th>
<th>Date</th>
<th>Topics</th>
</tr>
</thead>
</table>
| October 18 | **EXAM #02** | October 20 | 10.2 Lewis Structures of Atoms
10.3 L. S. of Ionic compounds | October 23 | 10.4-10.5 L. S. of Covalent compounds
10.6 Resonance of Lewis structure |
| October 25 | 10.7 Lewis Structure of Compounds and Molecular Shape
10.8 Electronegativity and polarity | October 27 | 11.2-3 Properties of Gases and pressure measurement
11.4 Boyle’s Law
11.5 Charles’s Law | October 30 | 11.6 Combined Gas Law
11.7 Avogadro’s Law
11.8 Ideal Gas Law
11.9 Dalton’s Law of Partial Pressure |
| November 1 | 11.10 Density of Gases, Ideal Gas Law and Gas Stoichiometry | November 3 | **Continued Ch11** | November 6 | |
| November 8 | 12.5 Changes of State
12.6 Intermolecular Forces | November 13 | 13.2 Homogeneous mixtures
13.3 Solubility, Rates of dissolving solids
13.5-7 Concentration of Solutions Colligative Properties | November 15 | **EXAM #3** |

PART-4 Chapter 12–Chapter 14

<table>
<thead>
<tr>
<th>Date</th>
<th>Topics</th>
<th>Date</th>
<th>Topics</th>
<th>Date</th>
<th>Topics</th>
</tr>
</thead>
</table>
| November 17 | Cont. Colligative properties
13.10 Osmosis and Osmotic pressure | November 20 | 14.2-3 Properties of Acids and Bases, Reactions of Acids and Bases | November 22 | 14.4 molecular definition of acids and bases |
| November 27 | 14.6 Dissociation of weak acids, Electrolytes and Nonelectrolytes | November 29 | 14.8 Introduction to pH and pOH | December 1 | 14.9 Dissociation of water/Review |
| December 06 | **EXAM #4** | December 12-15 | **FINAL EXAM** | | |

8
Please note that the exam dates given in the above table are tentative, and are subject to change and. you will be notified promptly when such changes are made, and what the changes are.

Examinations: 4 periodic examinations are given in approximately three or four-week intervals to assess the student’s understanding and application of concepts covered in class since the beginning of the semester.

Tentative Examination Schedule:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Material</th>
<th>Date/Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam 1</td>
<td>Chapters 1-5</td>
<td>Sep 20</td>
</tr>
<tr>
<td>Exam 2</td>
<td>Chapters 6-8</td>
<td>Oct 18</td>
</tr>
<tr>
<td>Exam 3</td>
<td>Chapters 9-11</td>
<td>Nov 15</td>
</tr>
<tr>
<td>Exam 4</td>
<td>Chapters 12-14</td>
<td>Dec 6</td>
</tr>
<tr>
<td>FINAL EXAM</td>
<td>All chapters</td>
<td>Dec 12-15</td>
</tr>
</tbody>
</table>

EXAMS DATES ARE SUBJECT TO CHANGE

MAKE-UP EXAMS:
MAKE UP EXAM WILL ONLY BE GIVING FOR SPECIAL CIRCUMSTANCES WITH THE PERMISSION FROM THE DEAN WITHIN A WEEK OF THE PARTICULAR EXAM. A SIGNED DEAN EXCUSE SHOULD BE E-MAILED PRIOR TO THE MAKEUP EXAM. YOU MUST BE AWARE THAT NO MAKEUP EXAM FOR EXAM #4 WILL BE GIVING UNDER ANY CIRCUMSTANCES.

MAKE-UP QUIZZES: NO MAKE-UP QUIZZES WILL BE GIVEN IN THIS COURSE.

FOR CEDAR STUDENTS: PLEASE SCHEDULE YOUR TEST WITH THE CEDAR OFFICE ON YOUR CLASS’S TEST DATE.

HOME WORKS: HW 1 – HW 14 will be posted in Pearson’s My Lab Mastering chemistry. No make-up home works will be given. MAKE SURE TO FINISH HOMEWORKS BY DUE DATES AND HOME WORKS WILL NOT BE RE-OPENED UNDER ANY CIRCUMSTANCES.

NOTE: A SCIENTIFIC CALCULATOR IS NEEDED FOR THIS CLASS.

Grading
The final grade for this class will be computed as shown below:

<table>
<thead>
<tr>
<th>Event</th>
<th>% Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Four Hour Exams</td>
<td>4 x 15 = 60</td>
</tr>
<tr>
<td>Quizzes</td>
<td>10</td>
</tr>
<tr>
<td>Homework</td>
<td>10</td>
</tr>
<tr>
<td>Final</td>
<td>20</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
</tr>
</tbody>
</table>
Grade Calculation

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Final Grades (%)

- **A**: 88-100
- **B**: 78-88
- **C**: 65-77
- **D**: 60-64
- **F**: below 60

The instructor reserves the right to adjust the grading scale so as to conform to the performance of the class. Please note that this does not in any way imply “CURVING.” Students will be informed when and if any adjustments are made to the grading scale.

NOTE: LAST DAY TO WITHDRAW FROM COURSE IS THURSDAY, NOVEMBER 9

Course Policies

Attendance Policy: attendance is taken during each class meeting. It is your responsibility to write your signature next to your name on the daily roll sheet. If you fail to do this, you are absent—no exceptions.

Students ARE ALLOWED one unexcused absence per credit hour of the course. A student exceeding the number of unexcused absences (4) for a four-credit hour course will be dropped from the course and assigned a grade of "F".

Academic Honor Policy: It is the aim of the faculty of Florida A & M University to foster a spirit of complete honesty and high standard of integrity. Anyone caught cheating in any manner is awarded the grade of **F**. No warnings will be given. It is your responsibility to do your own work. The use of textbooks, notes, pagers, cell phones, and programmable calculators are not allowed in any quiz or exam. Both persons collaborating by cheating will receive the Final grade of **F** with offenders also liable to serious consequences, possibly academic suspension. The University’s Academic Honor Policy is located in the Student Handbook, under the Student Code of Conduct-Regulation 2.012 section, beginning on page 55-56.

Students with disabilities: All students with disabilities should notify me immediately at the latest before the beginning of the third week of classes. Documentation of disability is required and should be submitted to the Learning Development and Evaluation Center (LDEC). For additional information please contact the LDEC at (850) 599-3180.

Official Statement: Any student whose disability falls within the American Disabilities Act (ADA) and requires accommodations should contact the Office of Services for Students with Disabilities. The office is located in the Student Service Building Room 204. You may also reach the office by phone at 259-6035.

Policy Statement on Non-Discrimination: It is the policy of Florida Agricultural and Mechanical University to assure that each member of the University community be permitted to work or attend classes in an environment free from any form of discrimination including race, religion, color, age, disability, sex, marital status, national origin, veteran status and sexual harassment as prohibited by state and federal statutes. This shall include applicants for admission to the University and employment.

ADDITIONAL CLASS REQUIREMENTS:

1. Successful attendance is defined as consistently present to the end (75 minutes).
2. Student can reach me in person or via email for any questions/problems.
3. Please use your FAMU mail and mention the course and section number.
Procedure for Resolving Faculty-Student Conflicts:

- Student first attempts to resolve issue with instructor
- Student submits written statement of problem to Departmental chair
- Chair forwards student statement to instructor
- Instructor responds in writing to chair
- Chair meets with instructor and/or student if necessary
- Chair forwards response/recommendation to Dean’s office

Intent to Grieve Form. Students must submit Intent to Grieve Forms, online, within two weeks of grades being made available for students to view in accordance with the University Registrar’s calendar. Students cannot submit an Academic Grade Grievance without submitting an Intent to Grieve Form unless they receive an exception from the Associate Dean.

Academic Calendar: Fall 2023

August 28 Classes begin (Full-Time Studies)
September 1 Last day to drop and add
September 4 Labor Day
November 9 Last day to withdraw
November 10 Veteran’s Day
November 22-24 Thanksgiving - No classes for the week
December 8 Last day of classes
Final Exam Dec 11-15

Convocations

Friday September 15 President’s Convocation 10:10-12:10
Friday October 27 Homecoming Convocation 10:10-12:10